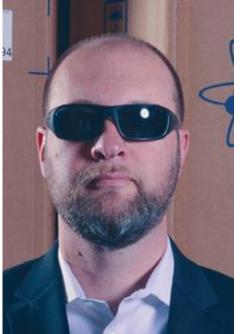


Tuesday, September 20, 2022


Presented By: Cliff Watkins & Jeremy Bland

Cliff Watkins PhD Direction, Application Development (302) 528-2036 / cliff@polysource.net

- 41-Year Plastics Industry Veteran • Past Owner of Custom **Compounder TP Composites** • Ph.D. Chemistry • 14 Years with PPG Fiber Glass

Jeremy Bland Materials Technology Manager (515) 782-2056 / jeremy@polysource.net

• 24-Year Plastics Industry Veteran

- Pittsburg State University-Plastics
- Process Engineering Expertise
- Six Sigma Black Belt

We are **THE FIXERS**.

The PolySource Webinar Series

HOW TO SURVIVE THE STRUCTURAL PA66 SHORTAGE

HOW TO IMPROVE YOUR MATERIAL SELECTION PROCESS

COMPARING NYLON-POLYAMIDES, INCLUDING SPECIALTIES

SELECTING THE RIGHT RESIN TO MEET YOUR APPLICATIONS REQUIREMENTS

RESOLVING PROCESSING AND PART PERFORMANCE ISSUES BY CHANGING MATERIALS

POLYKETONE (POK) – A MATERIAL OPTION VS EXPENSIVE AND SCARCE ENGINEERING THERMOPLASTICS

COMPARING RESIN MATERIAL TOUGHNESS AND HEAT RESISTANCE

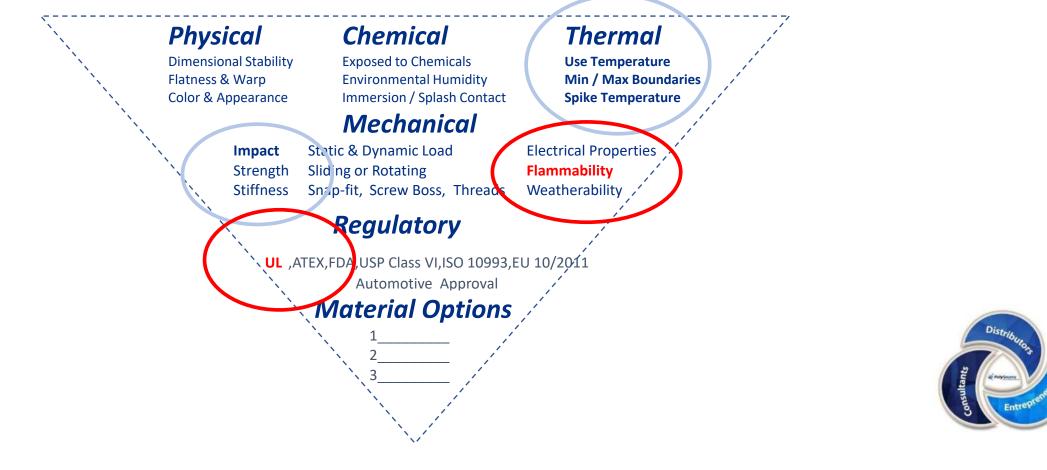
MATERIAL OPTIONS VS SCARCE ENGINEERING THERMOPLASTICS

FLAME RETARDANT THERMOPLASTICS '101'

https://polysource.net/resources/?type=webinar.

- Design / Material Selection / Processing / End Use Considerations
- Review of UL Yellow Card Ratings
- UL94 & UL 746 A Tests
- FR Additives Pros & Cons
- CA Prop 65, EU REACH, & RoHS Implications for FR Materials
- Processing Considerations for FR Resins & Compounds

The PolySource Design Funnel



Continuation of the use of"The PolySource Design Funnel"

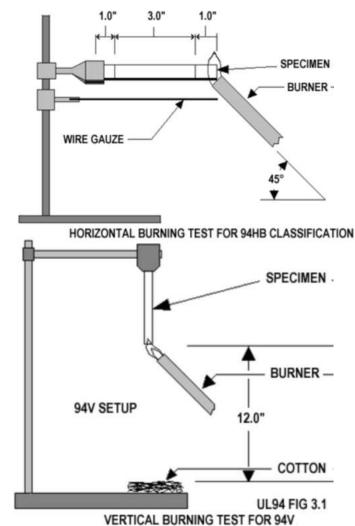
The PolySource Design Funnel

Continuation of the use of"The PolySource Design Funnel"

UL Yellow Card Ratings

Flammability Flame Rating

1.5 mm, BG	V-0	IEC 60695-11-10, -20
2.5 mm, BG	V-0, 5VA	
3.0 mm, BG	V-0, 5VA	
3.8 mm, BG	V-0	150 60605 0 40
Glow Wire Flammability Index (3.8 mm)	960 °C	IEC 60695-2-12
Glow Wire Ignition Temperature (3.8 mm) ectrical	775 °C Value	IEC 60695-2-13 Test Method
Hot-wire Ignition (HWI)	value	UL 746A
1.5 mm	PLC 3	OL 740A
2.5 mm	PLC 3	
3.0 mm	PLC 2	
High Amp Arc Ignition (HAI)		UL 746A
1.5 mm	PLC 0	
2.5 mm	PLC 1	
3.0 mm	PLC 1	
Comparative Tracking Index (CTI)	PLC 2	UL 746A
Dielectric Strength	24 kV/mm	ASTM D149
High Voltage Arc Tracking Rate (HVTR)	PLC 3	UL 746A
/olume Resistivity	1.0E+15 ohms cm	ASTM D257 IEC 60093
Arc Resistance	PLC 6	ASTM D495
nermal	Value	Test Method
RTI Elec		UL 746B
1.5 mm	125°C	
2.5 mm 3.0 mm	125 °C 125 °C	
3.8 mm	125°C	
RTI Imp	125 0	UL 746B
1.5 mm	115 °C	021400
2.5 mm	115 °C	
3.0 mm	115 °C	
3.8 mm	115 °C	
RTI Str		UL 746B
RTI Str 1.5 mm	125 °C	UL 746B
	125 °C	UL 746B
1.5 mm 2.5 mm 3.0 mm	125 °C 125 °C	UL 746B
1.5 mm 2.5 mm 3.0 mm 3.8 mm	125 °C	
1.5 mm 2.5 mm 3.0 mm 3.8 mm Deflection Temperature Under Load	125 °C 125 °C 125 °C	UL 746B ISO 75-2/A
2.5 mm 3.0 mm 3.8 mm Deflection Temperature Under Load 1.8 MPa, Unannealed	125 °C 125 °C 125 °C 137 °C	ISO 75-2/A
1.5 mm 2.5 mm 3.0 mm 3.8 mm Deflection Temperature Under Load 1.8 MPa, Unannealed	125 °C 125 °C 125 °C 125 °C 137 °C Value	ISO 75-2/A Test Method
1.5 mm 2.5 mm 3.0 mm 3.8 mm Deflection Temperature Under Load	125 °C 125 °C 125 °C 137 °C	ISO 75-2/A


Test Method

UL 94

UL Ratings are A La Carte & the Costs Add Up

UL-94 / ASTM D635 / ISO 3795 / FMVSS302 Flame Ratings

	Orientation of	Definition	plaque			
Class	Test Sample	Definition	Allowed	Flaming	Non- Flaming	Holes
UL 94 HB	Horizontal	Slow Burning	Burning rate of le than 3mm thi			
UL 94 V-2	Vertical	Burning Stops	30 seconds	Yes	Yes	
UL 94 V-1	Vertical	Burning Stops	30 seconds	No	Yes	
UL 94 V-0	Vertical	Burning Stops	10 seconds	No	Yes	
UL 94 5VB	Vertical	Burning Stops	60 seconds	No	No	Yes
UL 94 5VA	Vertical	Burning Stops	60 seconds	No	No	No

Flammability Resistance to an Open Flame

UL-746A Electrical Ratings

			Units	Winded wire (5 turns)
HWI	Hot Wire Ignition	# of seconds to ignite or burn through the sample	seconds	Specimen (0.4 – 3.2 mm)
HAI	High Amp Arc Ignition	# of arc ruptures to ignite the sample	# of arcs	Hot Wire Ignition Test (HWI)
HVTR	High Voltage Arc Tracking Rate	rate at which a tracking path is created	mm/min	
D-495	Arc Resistance	seconds of resistance to form a conducting path	seconds	glow wire loop (max. 960°C) trailey
сті	Comparative Tracking Index	voltage which causes tracking	voltage	wrapping tissue
GWFI	Glow Wire Flammability Index	highest Temp after 30 seconds sample does not ignite	°c	
GWIT	Glow Wire Ignition Temperature	Lowest Temperature at which the material ignites and burns > 5 seconds	°c	Cu Arc Steel

PolySource

electrode

Specimen

Flammability Resistance to an Electric Arc or Heated Wire

UL-746A Performance Level Category (PLC) Ratings

PLC Ratings	Units	0	1	2	3	4	5	6	7
нш	seconds	<u>≥</u> 120	60 - 119	30 - 59	15 - 29	7 - 14	< 7		
HAI	# of arcs	<u>≥</u> 120	60 - 119	30 - 59	15 - 29	<15			
HVTR	mm/min	0 - 10	10.1 - 25.4	25.5 - 80	80.1 - 150	>150			
D-495	seconds	<u>></u> 420	360 - 419	300 - 359	240 - 299	180 - 239	120 - 179	60 - 1 1 9	< 60
СТІ	voltage	<u>></u> 600	400 - 599	250 - 399	175 - 249	100 - 174	< 100		

Lower PLC Ratings are Better

UL-746B Relative Thermal Index (RTI)

- RTI Ratings are Continuous Use Temperatures, at which a plastic is <u>estimated</u> to retain > 50% of initial values, after 100,000 hours (at that temperature), under zero load (stress, pressure, force etc.)
- Actual test times at UL range from 500 to 5000 hours, to collect the raw data
- Multiple temperature, linear regression analysis is used to plot the data to an extrapolated 100,000 hr result
- There are three (3) RTI values that can be assigned
 - RTI Electrical, retention of dielectric strength (electrical insulation)
 - RTI Impact, retention of either tensile impact or Notched Izod impact
 - RTI Strength, retention of tensile stress
 - FR materials <u>must</u> retain their V rating after the heat aging cycle
- A generic RTI is assigned to UL Listed materials, when long term testing has not been conducted

RTI's are VERY Expensive to Obtain, & Many Applications Don't Need Them

UL-746C Weathering: f1 and f2

- Simulated outdoor weathering is conducted using either a carbon electrode UV or Xenon arc UV source for 700-1000 hours
- Samples are then immersed in water for 168 hours at 70 °C
- FR performance, tensile stress and Notched Izod impact are measured before & after the exposure sequence
- An f1 rating is assigned when the mechanical & FR performance are retained after both UV & water immersion
- An f2 rating is assigned when either the UV or immersion performance is retained

Weathering Tests at UL Can Take as Long as 8-10 Months to Complete Due to Capacity Constraints

Three Main Categories for Flame Retardant Plastics:

- Inherently FR
- Halogenated
- Non-Halogenated

Lots of Choices with Plenty of Trade-Offs

Inherently FR

Pros

- PPS, PEI, Fluoropolymers, PPSU & certain PC's
- Do not require nor contain external FR additives
- Suitable for food contact
- These are ideal from a regulatory standpoint, for REACH and RoHS compliance
- Excluding PC, these are all low smoke generating materials too

Cons

- Cost per lb.
- They are a challenge to mold
- Most fluoropolymers require corrosion resistant metal alloys (\$\$\$) for all surfaces in contact with the melt

Halogenated FR

REACH & RoHS

- EU regulators will likely ban all brominated FR additives when suitable non-hal options exist
- Brominated additives have been shifting to polymeric and oligomeric grades and away from 'small molecule' types

Pros

- Bromine and AO are extremely efficient
- REACH inadvertently pushed Bromine FR technology to better & better thermal resistance
- Diminished plate-out & blooming

<u>Cons</u>

- Significantly increase material density
- Mold corrosion & machine wear
- Smaller processing window

Non-Halogenated FR Additives

- Phosphate Esters
 - FR PC/ABS
- Alumino-Phosphate Salts
 - Polyamides, Polyesters
- Amino-Phosphate Blends
 - Polypropylenes & Polyethylenes
- Red Phosphorus
 - Polyamides
- Magnesium & Aluminum Hydroxides
 - Polypropylenes & Polyethylenes

Non-Halogenated FR Additives

Pros

- Lower material density in most cases
- Reduced concerns on machine corrosion
- Processing friendly

Cons

- Polyolefins require high loadings of non-hal which degrades mechanical & processing performance
- Supply constraints for multiple reasons
- Cost per lb. is generally higher

Flame retardant additives

DENSITY	LOW	HIGH	MEDIUM	MEDIUM	LOW
MECHANICAL PROPERTIES	GOOD	LOW	GOOD	MEDIUM	GOOD
LOI (%)	27 - 30	>35	24 - 30	40 - 45	36-45
ASPECT/COLOUR	RED or DARK		+/-		

Comparing Flame retardant compounds solutions

	PROPERTIES			PA66	LATAMID 66 H2 G/25-V0			
	PROPER	TIES		GF30	CT1	HF1	KB3	
Density		ISO 1183	g/cm3	1,36	1,58	1,4	1,33	
Shrinkage	Longitudinal Transversal	ISO 294-4	%	0,5/0,9	0,45 0,85	0,55 0,95	0,5 0,85	
Charpy not	ched 23°C	ISO 179-1eA	kJ/m²	10	7	8	10	
Tensile Stre	ength at break		Мра	185	135	140	135	
	Elongation	ISO 527 23°C	%	3,2	2,1	3	2,2	
	Modulus		Мра	9 400	9 200	8 500	8 200	
HDT 1,81 M	N/m2	ISO 75	°C	245	240	235	225	
Oxygen Ind	ex Limit	ASTM D2863	%	27	35	32	26	
Flammabilit	ty Rating	UL94-V0	mm	HB	0,4	0,75	1,5	
GWFI IEC-695-2-12		°C	-		960			
	GWIT	IEC-695-2-13	C	-	900	775	-	
Comparativ Index	e Tracking	IEC 112	Volt	500	400	600	600	

There's No Free Lunch When Selecting FR & Electrical Performance

Regulatory Considerations for FR Plastics

REACH

- Targets specific chemicals, mixtures & compounds
- EU regulators will likely ban all brominated FR additives when suitable non-hal options exist
- Brominated additives have been shifting to polymeric and oligomeric grades & away from 'small molecule' types

<u>RoHS</u>

- Targets specific additives & chemicals used in Electrical & Electronic devices
- Aimed at end-of-line considerations and keeping hazardous materials out of landfills

CA Prop 65

- Antimony oxide is listed
- (so too, is "alcoholic beverages", "Tamoxfen", "Cisplatin")

Lots of Choices with Plenty of Trade-Offs

Processing Considerations for FR Plastics

PolySource

- Drying FR Polymers
- Thermal Stability Concerns
 - Halogenated/Non-Hal
 - Actual Melt Temperature vs. Non-FR Grades
 - Barrel Residence Time
 - Hot Runner Systems
 - Back Pressure
 - Screw Recovery

- Tooling, Screw & Barrel Materials / Coatings
 - General Purpose Design
 - Stainless Steel
 - Chrome Plating/Titanium Nitride Coatings (Mold)
 - Beryllium Copper
- Gates & Runners

Regrind?

- Mold Maintenance / Cleaning / Purging
- Importance of Proper Venting in the Mold
 - Designed In, Not an Afterthought!
 - ¹/₂" Wide Every 2" of Parting Line

Lots of Choices with Plenty of Trade-Offs

ForTii in Internal Functional MCCB components Electrical & Electronics - F11

Customer needs and Market trends:

• ForTii F11 meets all the stringent requirements for tripping bars, tripping unit parts and chamber materials, where thermo-mechanical and electrical performance are essential

Key benefits of ForTii:

- Excellent dielectric aging performance at 150 °C
- High CTI values at 600 volts
- very high HDT and Hal Free V0 from 0,2mm onwards
- Improved surface aesthetics

pplication	Internal Functional MCCB Components
referred ForTii (Ace) grades	F11, TX1

High Heat / High Voltage Resistance / Thick Wall Design

Stanyl in E-motors Automotive - TW241F6, TE250F6

Customer needs and Market trends:

- Increase Power density: High flow-thin wall, high toughness and High HDT-A
- Use/assembly: Snap fit designs, no flash, Good mechanics, High CTI
- Water cooled molds: Higher temperatures Class H (<180 °C) vs PA66 GF (Class F < 155 °C)
- Noise Reduction/Lifetime: Move from brushed to Brushless motors
- Lifetime: ATF Chemical Resistance/heat aging CUT at 160-180 °C (E vs W stabilized)

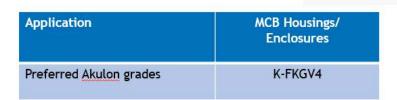
Key benefits of Stanyl:

- High Flow, High Toughness, ATF resistance
- Excellent High temperature and creep resistance
- UL1446 Class H at 0,35 mm thickness (HB & V0).
- High CTI > 500 V and best in class mechanics

Application	НВ	VO	Super Flow	Stiffness
Preferred Stanyl grades	TW241F6, TW200F6, TE200F6	TE250F6	TW341, 46SF5030	TW241F10

PA4/6 Solutions in HB & V-0 Compositions

Akulon in MCB Housings/ Enclosures Electrical & Electronics - K-FKGV4


Customer needs and Market trends:

- Producers of low voltage switchgear (LVSG) are turning to more environmentally friendly solutions
- Halogen-free <u>flame retardant</u> Polyamide 6 (PA6).
- Laser Marking ability
- Solid state base circuit breakers

Key benefits of Akulon:

- 80% better flow*
- 25% reduced Injection molding cycle time*
- · Lower process temperatures
- · Halogen and Phosphorus free
- Meets UL94 VO

Halogen Free FR Systems Driven by RoHS

Motor brush rod LATAMID 66 H2 G/50-GWHF1

> GWFI 960°C Dimensional stability High stiffness Halogen free

High voltage switch LATAMID 66 H2 G/50-V0HF1

UL94-V0 Dimensional stability High stiffness Halogen free CTI 600V

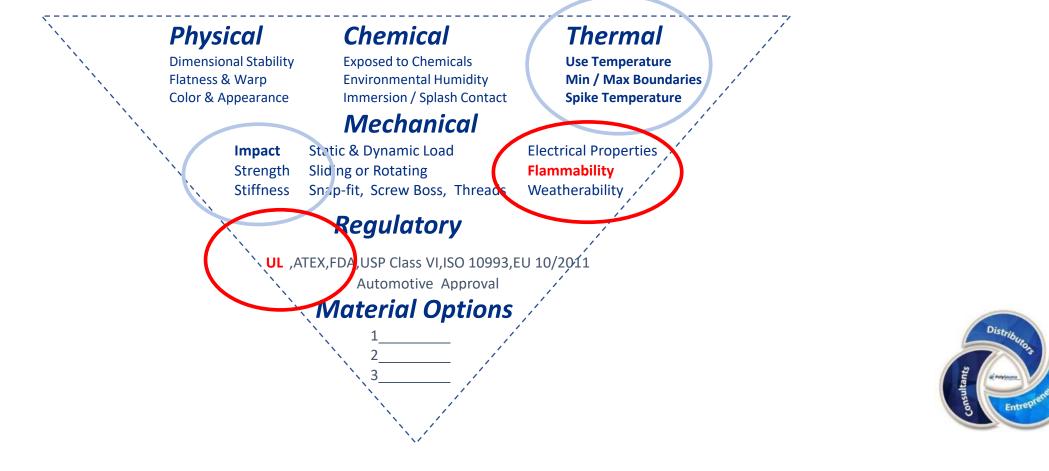
Busbar Support System LATAMID 6 H2 G/30-V0HF1

UL94-V0, Yellow card, GWFI 960°C Flowability Halogen free CTI 600V

Different FR Technologies to Deliver the Best Design Solution

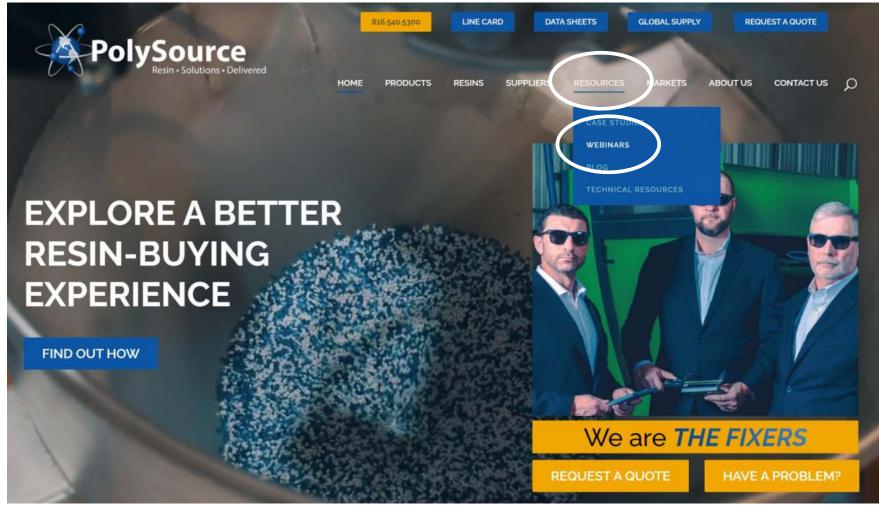
PBT - Industrial switches

UL94-V0, Yellow card **Dimensional stability** Halogen free CTI 600V


Switch

Non-Hal FR's are Preferred for Consumer Appliances in the EU

The PolySource Design Funnel



Continuation of the use of "The PolySource Design Funnel"

Today's Webinar

Please Find the Presentation @www.polysource.net/resources/webinars

The PolySource Webinar Series

HOW TO SURVIVE THE STRUCTURAL PA66 SHORTAGE

HOW TO IMPROVE YOUR MATERIAL SELECTION PROCESS

COMPARING NYLON-POLYAMIDES, INCLUDING SPECIALTIES

SELECTING THE RIGHT RESIN TO MEET YOUR APPLICATIONS REQUIREMENTS

RESOLVING PROCESSING AND PART PERFORMANCE ISSUES BY CHANGING MATERIALS

POLYKETONE (POK) – A MATERIAL OPTION VS EXPENSIVE AND SCARCE ENGINEERING THERMOPLASTICS

COMPARING RESIN MATERIAL TOUGHNESS AND HEAT RESISTANCE

MATERIAL OPTIONS VS SCARCE ENGINEERING THERMOPLASTICS

FLAME RETARDANT THERMOPLASTICS '101'

https://polysource.net/resources/?type=webinar.

Philippe Ciniello

Peter Schmieg

Samir Mutwalli STAR PLASTICS

Special Thanks for the Application Photos & Very Helpful Discussions?!

Thank You for Joining the Discussion Today!!

Cliff Watkins PhD Direction, Application Development (302) 528-2036 / cliff@polysource.net

39-Year Plastics Industry Veteran
Past Owner of TP Compositesbought by Techmer PM in 2013

- Ph.D. Chemistry
- 14 Years with PPG Glass

Jeremy Bland Materials Technology Manager (515) 782-2056 / jeremy@polysource.net

22-Year Plastics Industry Veteran
Pittsburg State University-Plastics
Process Engineering Expertise
Six Sigma Black Belt

QUESTIONS????