Plastics News

Selecting The Right Resin To Meet the Requirements of the Application

Cliff Watkins & Jeremy Bland PolySource LLC

Selecting The Right Resin To Meet the Requirements of the Application

Plastics News

Presented By: Cliff Watkins & Jeremy Bland

0r.....

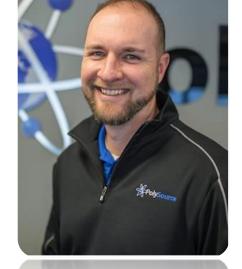
How to Avoid the Costly

Mistake of Using the Wrong

Material in the Wrong Application

Presented By: Cliff Watkins & Jeremy Bland

Selecting The Right Resin To Meet the Requirements of the Application



Cliff Watkins PhD

Direction, Application Development (302) 528-2036 / cliff@polysource.net

- 41-year plastics industry veteran
 Past owner of TP Compositesbought by Techmer PM in 2013
 PhD Chemistry
- 14 years with PPG Fiber Glass

Jeremy Bland Materials Technology Manager (515) 782-2056 / jeremy@polysource.net

24-year plastics industry veteran
Pittsburg State University-Plastics
Process Engineering Expertise

• Six Sigma Black Belt

Presented By: Cliff Watkins & Jeremy Bland

Materials for Design

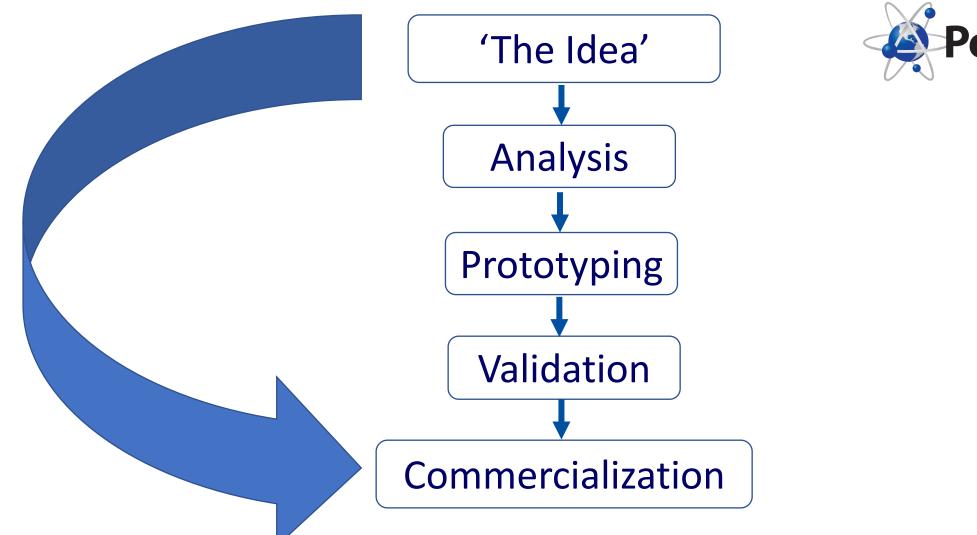
- Wood
- Glass
- Metals
- Polymers
 - <u>Thermoplastics</u>
 - <u>Thermosets</u>
 - <u>Rubber</u>
 - <u>Natural Rubber</u>
 - <u>Synthetic Elastomers</u>

Fabricating Methods

- Casting
- Stamping
- Injection Molding
- Extrusion
 - Machining
 - Sheet & Profile
- Thermoforming
- Compression Molding
- Compression & Sintering
- 3D Printing

Fabrication Methods With Polymers Directly Contribute to Design Flexibility

History of Plastics

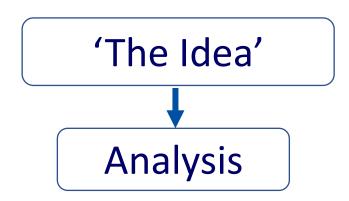

Celluloid, Replaces Ivory in 1864

Nylon Stockings debut, 1939 World's Fair NYC

Nearly Limitless Options in ETPs, How do you pick the "Best One"?

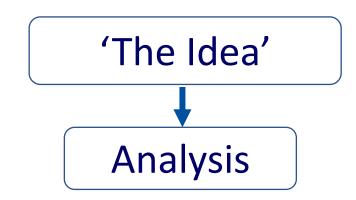
'The Idea'

What are the Objectives?


- 1. Better performance
- 2. Cost savings
- 3. Weight savings
- 4. Parts consolidation
- 5. Material substitution
- 6. Other

'The Idea'

What are the Objectives? Can you objectively 1. Better performance measure these?? 2. Cost savings 3. Weight savings 4. Parts consolidation 5. Material substitution 6. Other



Key Questions & Unknowns

- Determining technical feasibility.
- Can you actually produce your design?
- Cost calculations from reasonable assumptions.
- How will you validate your design?

To be Successful Designing with Plastic Materials

- ✓ Metal to plastic system cost analysis (CAE)
- ✓ Structural analysis (FEA)
- ✓ Process analysis (Mold flow)
- ✓ Material selection

Analysis Tools Critical to Designing With Plastics

1. Computer Aided Materials Analysis [*Computer Aided Engineering*] Will a concept be less expensive and can a plastic device 'work'?

2. Computer Aided Design [*Finite Element Analysis*] – What are the mechanical limits of the design, and will candidate materials meet the requirements?

3. Computer Aided Design [*Mold Flow Analysis*] – Will the candidate materials allow for proper molding and deliver satisfactory appearance and performance?

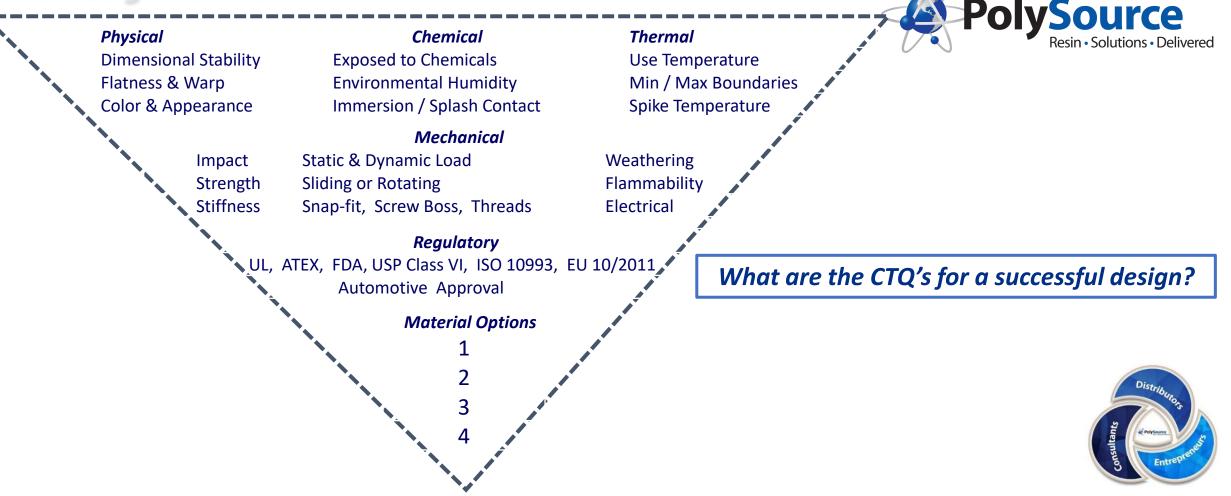
4. Prototyping & Validation – Machine prototype parts or build a prototype mold and make tests under real or simulated use environment

5. Commercialization

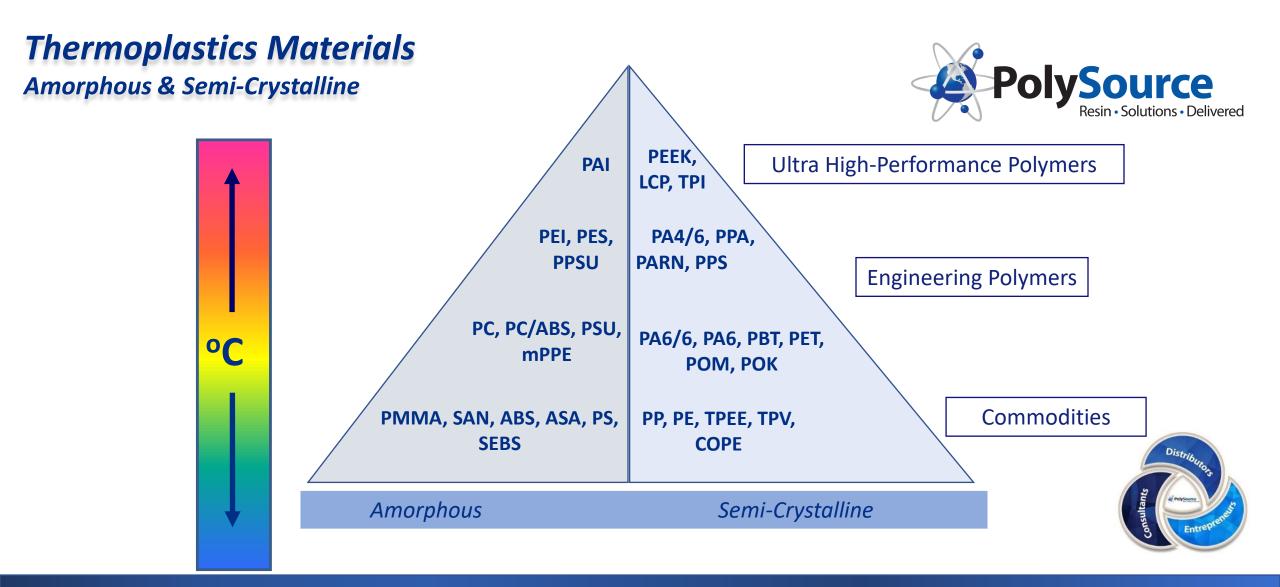
Critical Steps/Options !

Materials for Design

- Wood
- Glass
- Metals
- Polymers
 - <u>Thermoplastics</u>
 - <u>Thermosets</u>
 - <u>Rubber</u>
 - Natural Rubber
 - Synthetic Elastomers


What are the Objectives?

- 1. Better performance
- 2. Cost savings
- 3. Weight savings
- 4. Parts consolidation
- 5. Material substitution
- 6. Other



Some Fabrication Methods Are Not Conducive to Maximizing Design Flexibility

The Design Funnel

Lots of Upfront Questions, to Generate Answers That lead to a Better Design

Nearly Unlimited Problem-Solving Options with Thermoplastic Materials – Where to start the selection process?

Typical Properties – Engineering Resins

Amorphous

- Transparent (in many instances)
- Good Mechanical Properties (strength, stiffness, impact, etc.)
- Ease of Processing
- Dimensional Stability
- Predictable shrinkage (uniform)
- Softens, does not have melting point

Semi-Crystalline

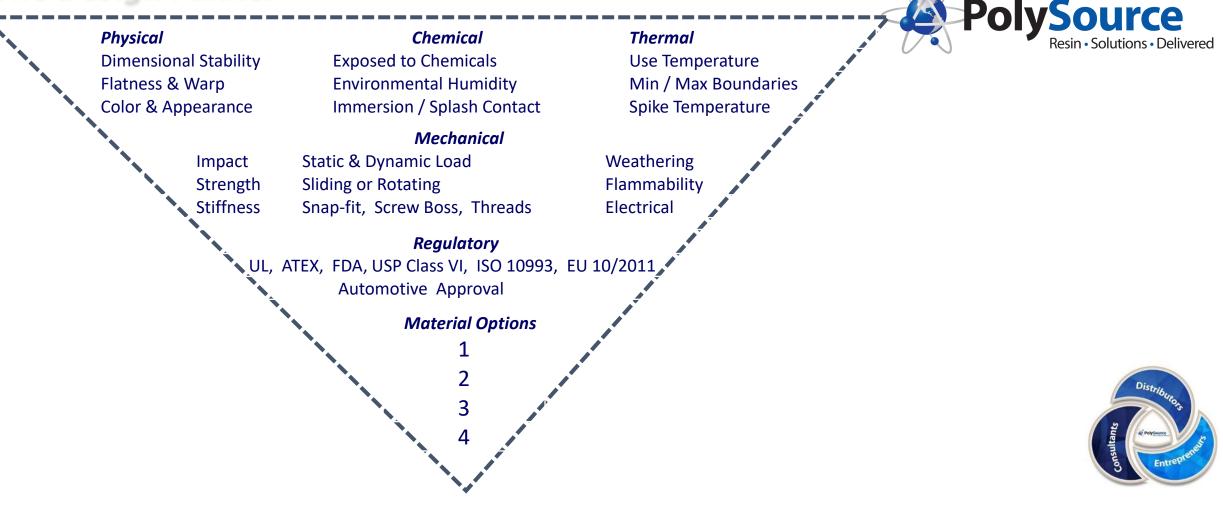
- Good Chemical Resistance
- Anisotropic Shrinkage (not uniform)
- Fatigue Resistance
- Good Electrical Properties
- High Heat Resistance (reinforced)
- Lubricity
- Sharp Melting Point

Understanding Your Requirements Enables Us to Select the Best Solution

Understanding the Thermal Conditions in Use

٠

THERMAL TRANSITIONS IN POLYMERS



Glassy State Melt State Rubbery State OR Viscoelastic State Crystalline t Property Amorphous Tough / Soft Melt Brittle Tm Τg (Glass Transition Temperature) (Melting Temperature) **TEMPERATURE** →

There Are Always Trade-offs in Engineering Plastics

The Design Funnel

Design Funnel......Answers That lead to a Better Design!!

The Pros & Cons of Engineering Plastics

Mold Shrinkage		
Warpage		
Flatness & Dimensional Control		
Dimensional Stability in Use		
Glossy Appearance		
Outdoor Use		
Humidity & Temperature Ranges		
UV / Sunlight Exposure		
Industrial chemical exposure		
Sanitizing chemical exposure		
Thermal resistance		

Amorphous

<u>Unfilled</u>	Filled/Fiber Reinf.	
Low	Low	
Low	Low	
Excellent	Excellent	
Excellent	Excellent	
Excellent	Poor	
Moderate	Moderate	
Moderate	Moderate	
Moderate	Moderate	
Poor	Poor	
Poor	Poor	
Moderate	Moderate	

UnfilledFilled/Fiber Reinf.HighLowModerateHighModeratePoorVery GoodExcellentExcellentModerate

Semi Crystalline

Moderate Moderate Excellent Moderate Excellent Excellent Excellent

Physical	Chemical	Thermal
Dimensional Stability	Exposed to Chemicals	Use Temperature
Flatness & Warp	Environmental Humidity	Min / Max Boundaries
Color & Appearance	Immersion / Splash Contact	Spike Temperature

Excellent

Moderate

Moderate

Excellent

Excellent

Excellent

The Pros & Cons of Engineering Plastics

Creep Resistance, room temp. Creep Resistance, elevated temp. Structural Load Capability Exposed to Electrical Voltage Flame Retardancy Coefficient of Friction Screw bosses & self tapping screws

	Amorphous		Sen	ni Crystalline
	<u>Unfilled</u>	Filled/Fiber Reinf.	<u>Unfilled</u>	Filled/Fiber Reinf.
	Moderate	Excellent	Moderate	Excellent
	Poor	Poor	Moderate	Excellent
	Poor	Moderate	Moderate	Excellent
	Moderate	Moderate	Moderate	Excellent
	Excellent	Excellent	Excellent	Excellent
	Poor	Excellent	Excellent	Excellent
5	Moderate	Moderate	Excellent	Excellent

	Mechanical		
Impact	Static & Dynamic Load	Weathering	
Strength	Sliding or Rotating	Flammability	
Stiffness	Snap-fit, Screw Boss, Threads	Electrical Properties	

The Pros & Cons of Engineering Plastics

Direct or indirect food contact (FDA) Potable water contact (NSF) USP Class VI, ISO 10993 UL, ATEX, EU, CSA, ETL

Automotive Powertrain Automotive Interior Automotive Exterior Electrical / Electronic Consumer Appliance

Amorphous			Semi	Cr
	<u>Unfilled</u>	Filled/Fiber Reinf.	<u>Unfilled</u>	<u>F</u>
	Excellent	Excellent	Excellent	
	Excellent	Excellent	Excellent	
	Excellent	Excellent	Excellent	
	Excellent	Excellent	Excellent	
	Poor	Poor	Excellent	
	Excellent	Excellent	Excellent	
	Moderate	Moderate	Excellent	
	Excellent	Excellent	Excellent	
	Excellent	Excellent	Moderate	

Semi Crystalline

Excellent
Excellent
Excellent
Excellent
Moderate

Excellent

Excellent

Excellent

Excellent

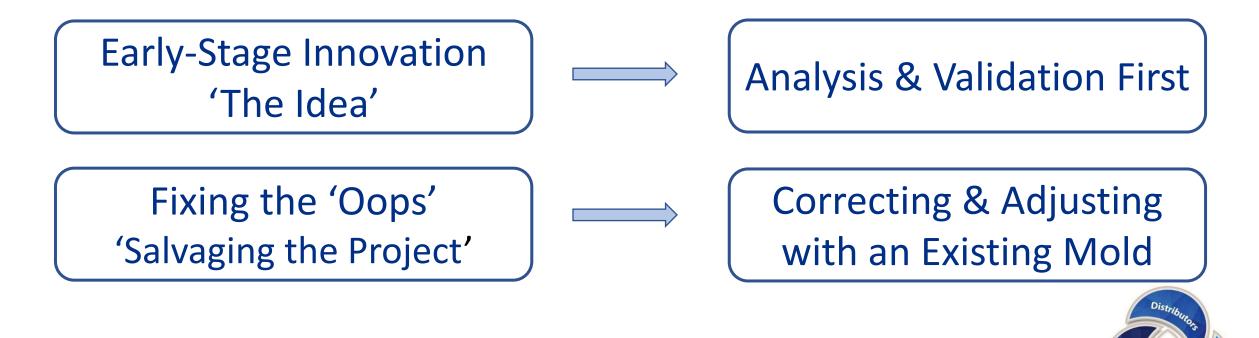
 Regulatory

 UL, ATEX, FDA, USP Class VI, ISO 10993, EU 10/2011

 Automotive Approval

Use the Tools Critical to Designing with Plastics

- 1. Computer Aided Materials Analysis
- 2. Finite Element Analysis
- 3. Mold Flow Analysis
- 4. Prototyping & Validation
- 5. Commercialization



\$3,000 in Mold Flow Analysis is Much More Betterer than a \$50,000 Boat Anchor

Designing with Engineering Plastics

Blends, Alloys & Additives Enable "Limitless" Problem Solving Options with Thermoplastic Materials

Incremental Design Changes

A common practice in incremental design & innovation

"use an approved resin, because we stock it"

While that is efficient it can result in expanding the use of an over engineered resin

- Negating the potential for real cost savings
- Missing the opportunity to truly achieve the best design

Example: Designing with 33% Glass PA6/6 when 30% Glass PA6 would suffice or Over-Looking the Potential of Using 30% Glass PP

Designing with Engineering Plastics

- Material Substitution for System Cost Savings &/or Weight Savings
- Ease of Assembly & Parts Consolidation
- Stronger, Stiffer, Tougher
- More Shrink or Less Shrink
- Consider Exposure Conditions
- Control Part Dimensions

Considerations and Issues at Prototyping Stage or After Commercialization

The Engineering Plastics Toolbox

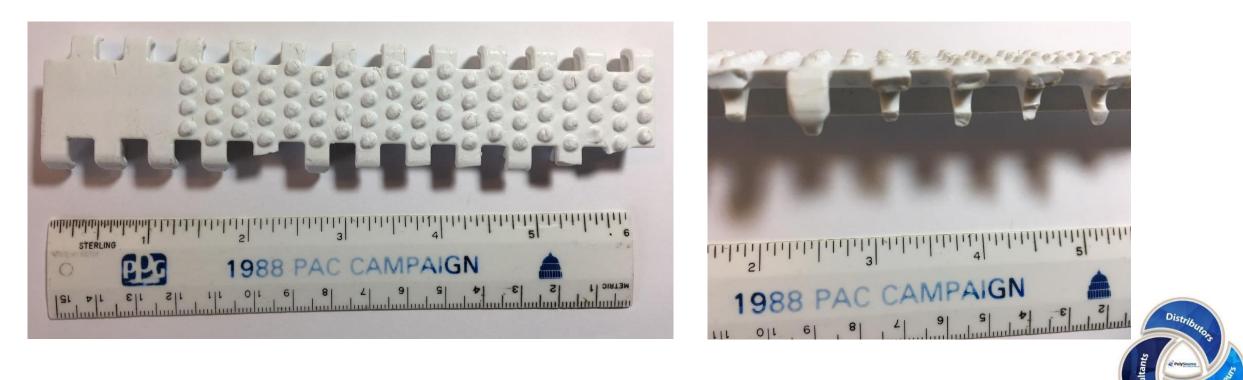
<u>Reinforcements</u>	<u>Lubricants</u>	<u>Specialties</u>
Glass Fiber	PTFE	Metal Powders
Carbon Fiber	Silicone	Inorganic Powders
Clay	p-Aramid	Thermal Conduction
Talc	MoS_2 (moly)	Laser Marking
Glass Beads	Graphite	Performance Additives

Tweaking Performance to Minimize Trade-Offs

Sometimes, you just Have to Make Tests with Delicious, Steamy Hamburgers on a Steam Table

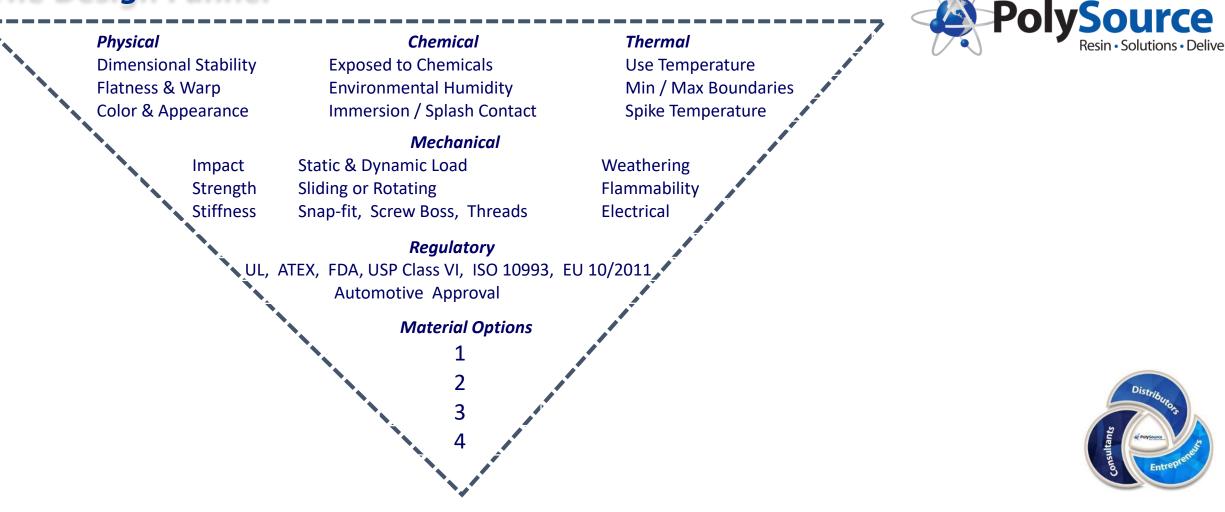
53

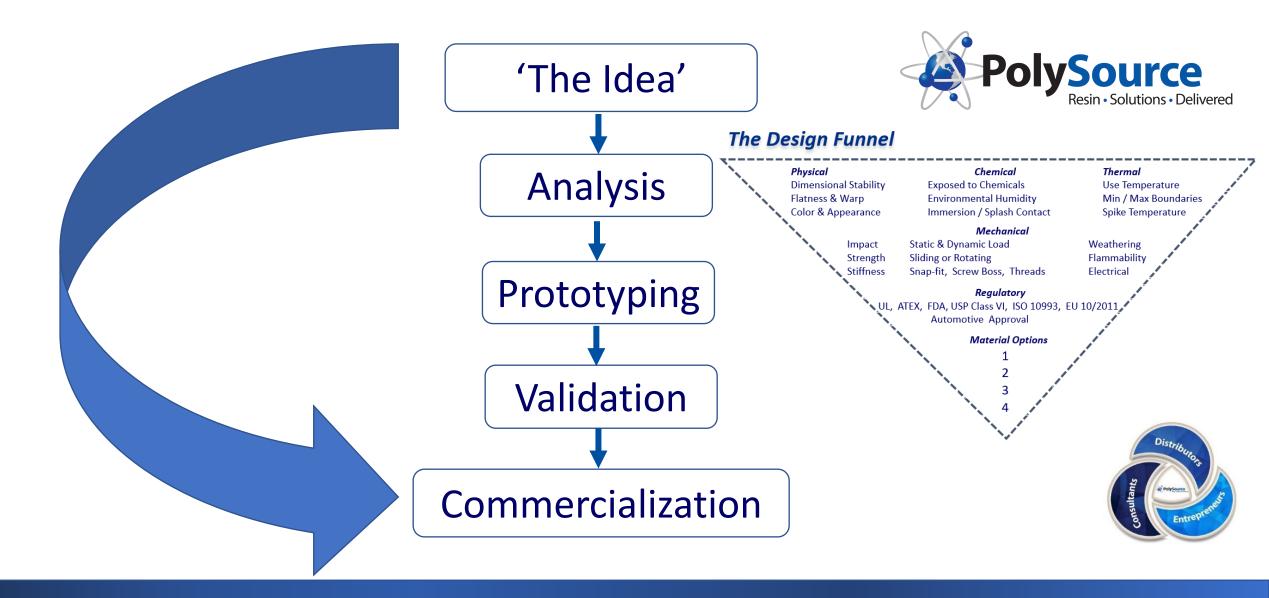
Given the Chance, Polyamides will Change in Performance with the Seasons



Dimensions, Gloss Surface, Resistance to Motor Fuel....> 10,000 Hours of Testing

Sanitizing Cleaners and Sprays can Wreak Havoc on Plastics





Dimensions, Flatness, Strength... Family Molds always seem like a Great Idea

The Design Funnel

Design Funnel......Answers That lead to a Better Design

Utilizing the PolySource Design Funnel makes ideas a reality!!

Plastics News

Thank You for Joining the Discussion Today!!

Cliff Watkins PhD Direction, Application Development (302) 528-2036 / cliff@polysource.net

39-year plastics industry veteran
Past owner of TP Compositesbought by Techmer PM in 2013
PhD Chemistry

• 14 years with PPG Glass

Jeremy Bland Materials Technology Manager (515) 782-2056 / jeremy@polysource.net

22-year plastics industry veteran
Pittsburg State University-Plastics
Process Engineering Expertise

• Six Sigma Black Belt

Questions ???